SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR
 (AUTONOMOUS)
 B.Tech I Year I Semester Regular \& Supplementary Examinations March-2023 BASIC ELECTRICAL \& ELECTRONICS ENGINEERING
 (Mechanical Engineering)

Time: 3 hours
Max. Marks: 60
(Answer all Six Units $6 \times 10=60$ Marks)
PART-A
UNIT-I

1 a Write the derivation for equivalent resistance in series circuit.
b Write the derivation of RMS Value of Alternating voltage.
OR
2 State and prove Kirchhoff's laws and explain with suitable example.
UNIT-II
3 a State Norton's theorem.
b Calculate the current in 2Ω resistor in the given circuit using super position theorem.

OR
4 Explain the principle and operation of DC generator.
CO2 L2 10M
UNIT-III
5 a Explain about constructional details of dc moto
b The counter EMF of Shunt motor is 227 V . The field resistance is 160Ω and field current 1.5 A . If the line current is 36.5 A , find the armature resistance also find armature current when the motor is stationary.

OR

6 a Explain the constructional details of transformer.
b A $100 \mathrm{kVA}, 11000 / 400 \mathrm{~V}, 50 \mathrm{~Hz}$ transformer has 40 secondary turns. CO3 $\begin{array}{llll}\text { C2 } & \mathrm{L} 4 & 5 \mathrm{M} \\ & \begin{array}{l}\text { Calculate the number of primary turns and primary and secondary } \\ \text { currents. }\end{array} & \end{array}$

PART-B

UNIT-IV

9 a Discuss the operation of NPN transistor with neat schematic CO5 L2 5M diagram.
b For a transistor, the leakage current is $0.1 \mu \mathrm{~A}$ in CB configuration, CO5 L3 5 M While it is $19 \mu \mathrm{~A}$ in CE configuration. Find $\alpha \& \beta$ of the same transistor?

OR

10 With neat diagram, explain the Input and Output characteristics of a
CO5 in CB Configuration.

UNIT-VI

11 a With a neat diagram deduct, the CG configuration of JFET
CO5 L5 5M
b Analyze the working condition of JFET working as a switch.
CO5 L4 5M
OR
12 a Explain the working principle of DMOSFET.
b List the applications of JFET and MOSFET.
CO5 L2 5M
** END ***

